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Vacuum polarization and the absence of free quarks
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This paper is addressed to the question of why isolated quark partons are not seen. It is
argued that in vector gauge theories it is possible to have the short-distance and light-cone
behavior of quark fields without real quark production in deep-inelastic reactions. The
physical mechanism involved is the flow of vacuum-polarization currents which neutralize
any outgoing quarks. Our ideas are inspired by arguments due to Schwinger and an intuitive
picture of Bjorken. Two-dimensional {1space, 1 time) vector gauge field theories provide
exactly soluble examples of this phenomenon. The resulting picture of deep-inelastic final
states predicts jets of hadrons and logarithmically rising multiplicities as conjectured by
Bjorken and Feynman.

l. LNTRODUCTION

The hypothesis that partons carry quark quan-
turn numbers' poses a deep puzzle. An optimist
can foresee a situation in the near future where
deep-inelastic structure functions indicate that
hadrons consist of pointlike quarks even though
no isolated quarks are detected experimentally.
The parton explanation of Bjorken sealing rests
on the idea that partons experience just soft, fi-
nite forces. ' This suggests that when a parton ab-
sorbs a very virtual photon of momentum Q it
should propagate essentially freely for distances
which grow linearly with Q. One mould naively
expect that once this distance exceeds the size of
ahadron, thenquarks couldbeproduced. If, infact,
quarks are not produced one should ask whether
the measurement of quark quantum numbers in
deep-inelastic processes and the absence of free
quarks is consistent @6th quantum field theory.
It is the purpose of this article to argue that this
consistency is indeed possible and can be demon-
strated in a solvable field theory.

The field-theoretic mechanism which allows this
consistency was discovered by Sehwinger. ' Sehwing-
er observed that the quantum vacuum of a gauge
field theory may be so polarizable that charge can
be completely screened. The vector mesons of the
gauge theory then acquire a mass. Vfe shall argue
that this mechanism can also remove the underly-
ing quarks from the physical spectrum of states.
This mechanism involves the large-distance prop-
erties of the field theory and does not modify the
light-cone and short-distance (i.e., scaling) prop-
erties of the theory. In our first example the
quark quantum numbers will be replaced by a sin-
gle charge (later to be replaced by charm). tn this
model the analog of triality mill be fermion num-
ber. %e present a second example containing a

triplet of quarks and show that the physical states
are mesons and baryons (qq and qqq states)

The physical picture of Schwinger's mechanism is
best illustrated for the annihilation reaction e'e- hadrons at center-of-mass energy Q. The vir-
tual photon decays into a quark-antiquark pair
which move apart at almost the velocity of light.
An "electric" field devel. ops between them and be-
gins producing qq pairs out of the vacuum. As the
original. qq separate, a line of polarized pairs
forms between them. The polarization charge
eventually catches up with the outgoing quarks
and combines with them to form hadrons. The
time necessary for the original. quarks to be
neutralized in this way increases linearly with

This softness of the final-state mechanism
insures that the matrix elements of deep-inelas-
tic scattering and annihilation behave as if the
original quarks were produced. The qq pairs
making up the polarization current have low rel-
ative subenergies and bind to form mesons.

This paper is organized as follows. In Sec. II
we illustrate the problems involved in avoiding
quark production in a conventional multiperiph-
eral parton model. A parton model due to Bjorken'
in which partons interact through vector ex-
changes is then discussed. In Sec. III two-di-
mensional (1 space, 1 time) quantum electrody-
namics is formulated as a model of the strong in-
teractions of quarks and its solution in terms of
free fields is presented. Then a semiclassical
treatment of e'e —bosons is presented and we
demonstrate how the outgoing quarks are neutral-
ized. Some properties of the distribution of the
produced bosons in momentum space are obtained.
In particular, they populate the available rapidity
axis with a constant, nonzero density. In Sec. IV
properties of free fermi fields in two dimensions
are discussed. The short-distance and light-cone
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10 VACUUM POLARIZATION AND THE ABSENCE OF FREE QUARKS

behavior of various matrix elements are obtained
for later comparisons with similar calculations in
the interacting theory. In Sec. V we compute
Green s functions and deep-in. elastic matrix ele-
ments in two-dimensional quantum electrodynam-
ics. %e demonstrate that although the short-distance
and light-cone behavior of multiple-current matrix
elements are characteristic of free Fermi fieMs,
the intermediate states of these matrix elements
involve only massive bosons. This proves our
claim that the fermions are absent from the phys-
ical spectrum of the theory. %'e also calculate
the deep-inelastic structure function for massive
bosons and find that it tends to a constant as
q =-q'/2q. p —0. The spectrum of bosons in
e'e - boson + anything is computed and is in
agreement with the semiclassical calculation of
Sec. III. In Sec. VI we present a three-triplet
model in which the physical sector consists of
bosons (qq) and fermions (qqq). In Sec. VII we
discuss a semiclassical model for the polarization
currents in four dimensions. Although the semi-
classical model cannot describe short-distance
behavior, it shows that the long-distance mech-
anisms which neutralize quarks may be possible
in four dimensions. Section VDI contains conclud-
ing remarks. Here we discuss the problems in-
volved in generalizing Schwinger's mechanism to
a, mechanism for screening triality in four dimen-
sions. In Appendix A the solution of two-dimen-
sional quantum electrodynamics in the Coulomb
gauge is given.

II. CONVENTIONAL MODEL AND
BJORKEN'S SUGGESTION

We first illustrate the problems involved in pre-
venting the presence of isolated quarks in the final
states of deep-inelastic reactions by considering a
model based on multiperipheral dynamics. ' In this
model partons only interact if they have small rel-

/2
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FIG. 2. Multiperipheral cascade. g; label the longi-
tudinal fractions of the partons.

ative subenergies. Consider the qq pair initially
produced by the decay of a very virtual timelike
photon of mass v'Q~. Each parton subsequently
evol,ves separately through low-subenergy pro-
cesses. The outgoing fast quark generates an-
other of lower momentum which produces a third
of yet lower momentum, etc. (Fig. I). At each
stage the emitted parton carries a finite fraction
of the longitudinal momentum of its predecessor
(Fig. I). It was hoped that each cascade would
eventually produce "wee" partons which could
form a bridge and neutralize the quark charges.
The difficulty with this suggestion can be seen by
estimating the time until the first event in each
cascade. Simple time-dilation arguments say that
the time necessary for the first cascade grows
linearly with g Q, where i~ is the longitudinal frac-
tion of the first cascade product (Fig. 2). Thus,
when Q becomes sufficiently large, the outgoing
partons are so far apart by the time the cascade
initiates that there is no chance for the two cas-
cades to overlap in coordinate space. Hence, this
traditional multiperipheral cascade which develops
from the fast quarks toward the central region
("outside-inside" cascade, Fig. I) fails.

One possible mechanism which avoids this di-
lemma has been proposed by Bjorden. ' It involves
the presence of vector forces between partons.
Vector exchanges allow partons of arbitrarily high
subenergy to interact with finite probability. In
particular, the amplitude for the outgoing quark to
produce a vector meson of longitudinal fraction g

FIG. 1. Multiperipheral parton cascade in e'8 —any-
thing. The wee partons in different cascades do not over-
lap in configuration space and cannot interact.

FIG. 3. Vector exchanges create a pair between the
original par tons.
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FIG. 4. Figure 3 with two pairs at small subenergy.
The probability for this process falls to zero by several
powers of Q faster than Q 2.

remains finite as g tends to zero. Therefore, the
time needed for the original quark to emit a wee
(q & Q '} vector meson is of order unity
(g Q Q '

Q l}. Suppose now that each outgoing
parton radiates a wee vector meson in a time of
order unity. The vector fields can then create a

parton-antiparton pair as in Fig. 3. The probabil-
ity for this event is large in the sense that the con-
tribution this graph makes to the total cross sec-
tion o,+,—scales as Q '. The subenergy of the
newly created pair is smal1. . The pair has uniform
probability to have any rapidity between the rapid-
ities of the initial quarks. Since the subenergy of
the new pair is small, it is almost impossible to
combine the members of the new pair with the ini-
tial quarks to form two outgoing mesons (Fig. 4).
At this stage the rapidity axis has two large vacant
sections. Therefore, one expects the vector forces
to create additional pairs in these regions of phase
space (Fig. 5). These processes can continue to
occur until the availab1. e section of the rapidity
axis is uniformly populated with pairs. Once this
occurs the quarks can form a set of outgoing
mesons as shown in Fig. 6.

FIG. 5. Second-generation "cascade" in vector-ex-
change model.

FIG. 6. "Inside-outside" vector-exchange cascade after
time duration = Q. The indicated pairs are at finite sub-
energies and can form mesons which uniformly populate
the available rapidity axis.
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FIG. 7. Configuration-space visualization of Fig. 3.

Now consider the space-time development of the
final state. Initially the origina1. partons are re-
ceding from one another at almost the speed of
light. After separating a certain finite average
distance, the first generation pair is produced be-
tween them (Fig. 7}. It is convenient to think of
this pair as a dipole g(r, -r ) where r, refers to
the position of the quark (antiquark) and g is the
quark-gauge-field coupling constant. Subsequent-
ly, more pairs are produced and the region con-
taining polarized pairs between the receding
original partons spreads out along a line between
them (Fig. 8). This type of process can be thought
of as an "inside-outside" cascade. It mill be con-
venient to define a dipole density on this line

p(z, f} The p.olarization charge density and cur-
rent are then,

The outer ends of the line of polarized pairs carry
net polarization charge which eventually catches
up to the original. receding charges and neutral-
izes them (Fig.9). The process we have described
must not only be probable, but it must occur with
probability one. %e mill argue that this is indeed
the case when the Schminger phenomenon' occurs.

g= qiy~a „y--',E„,F"'-gqq[" gA„, (2)

III. A PHYSICAL PICTURE OF TNO-DIMENSIONAL
QUANTUM ELECTRODYNAMICS

In this section we will consider two-dimensional
massless quantum electrodynamics' as a model of
the Schwinger mechanism. In this case, unlike
four-dimensional quantum electrodynamics, the
Schwinger phenomenon occurs for all values of the
coupling constant.

Tmo-dimensional massless quantum electrody-
namics is described by a tmo-component Fermi
field g and a vector potential g„. The familiar
Lagrangian reads

FIG. 9. After time duration = Q the line of dipoles
catches the outgoing pair. This is the configuration-
space visualization of Fig. 6.

The definition of the electric current requires
some care in order to satisfy gauge invariance.
Define the point-separated current'

j"(x} = sym limgy( x+}ey"

X+ 6

xexp i g A"dx„y x,

It follows that f satisfies the equation

(0+ m')y = -m'y, „„
and P is proportional to a canonical massive boson
field. P satisfies commutation relations

[y(z, i), y(z', i)] = im'5(z -z').
The equation of motion for A„ in the Lorentz

gauge follows from Eq. (2),

&& = j+ jcxt (lo)

Therefore, from Eqs. (5) and (10) we see that
m'A +j satisfies a massless Klein-Gordon equa-
tion. Thus, if we define P by the equation m'A„
+ j„=e„„b"(IF), then

Zy =0.

where & is a spacelike vector. The equation of
motion for j~ follows'.

(z+m') j" (x) = 0,
where m2= g' jv. Thus, the spectrum of the theory
contains free massive bosons. If an external cur-
rent j,"„,(x) is introduced into the theory, the equa-
tion of motion for jI' becomes

( +m'}j" (x) = —m'j,"„,(x).
We will introduce a dipole density y(x) in analogy
with Eq. (1),

j]i +/VS (t), jP -~/VS

a,nd the equations of motion a,re

y" (ia„—g~„)y =0,

j "=-w~ "w= &,+"",
F~' =a~a' —e'W&

FIG. 8. Subsequent development of a line of dipoles
bebveen the original parton-antiparton pair.

Furthermore, since'

[j,(z, i), j,(z', i)] = im'&'(z -—z')

and

[a,(z, i), a, (z', i)] =O,

it follows that

[(t((z, i},d(t((z ', t)/dt] = —i m'5(z —z ').

(12)

The solution for the Fermi field has a particularly
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simple form which illustrates the utility of the
fields (t( and (t(. It is easy to see that E(I. (3) can
be solved in terms of a free canonical Fermi field
y given by

X(x) = expbg~C(x)l &(x),

where n = y,y, and (I = ((((j( —(t()jg'. This result
will prove useful in later discussions of matrix
elements of bilinears such as Pf and $y" g.

To see how polarization currents in the model
prohibit individual quark production, consider the
example e'e -anything. %'e begin with a very
energetic state of a quark and an antiquark ema-
nating from one space-time point. The outgoing
initial quarks will be replaced by a c-number ex-
ternal current consisting of two point charges
which travel at (almost) the speed of light in op-
posite directions. Then,

j . =g&(z —t), j, =g~(z —t) for z +0,

j',"'= g5(z+t)-, j","'=gf(z+t) for z&0,

The external dipole density is then

g8(t+z)-8(t -z) (17)

FIG. 10. The spreading of the dipole density @ with
time. The polarization charge is nonzero in regions of
space where III) varies.

so the induced q-number dipole density satisfies

(O+m')y=gm'8(t+z)8(t-z). (18)

The radiation field resulting from E(I. (18) is de-
scribed by a coherent state. The amplitude of the
coherent state satisfies the same equation as P
itself with vacuum boundary conditions for negative
times. The solution to E(I. (18) is

1 1 )p, „d2p('(*(=2Ef( e
(2~(

where the boundary conditions are P(x) =0 unless
t&0 and t'&z'. In coordinate space

y(x) =g8(t+z)8(t -z) —gns(m', x'),

where 4~ is the retarded commutator. 4„ is well
approximated by 8(t+z)8(t -z) near the light cone
and by e *' for ~x~ large. Thus, the resulting
amplitude vanishes near the light cone and tends
to a constant when ~x(&m '. Since P is also a
Lorentz-invariant function, the lines of constant

are the hyperbolas t' -z' =constant.
%'e can now understand the time development of

the polarization charge. At small time t&m ',
the dipole density Q as a function of z is small.
For t =m ' the dipole density midway between the
receding pair is =g as in Fig. 10. As t grows the
dipole density becomes constant over the entire
spatial line between the pair (Fjg. 10 ). The polar-
ization charge B,p follows the outgoing initial

fermions. The region of variation of p which
contains the polarization charge is confined to an
interval of order (tm') ' from the outgoing partons.
This follows from the fact that Q is constant on
hyperbolas which approach the light cone asymptot-
ically. The magnitude of each polarization charge
is given by the difference of P across these in-
tervals. Since P vanishes on the light cone, the
polarization charges are given by the values of p
midway between the outgoing quarks. From Eq.
(20) one sees that the polarization charges are
equal and opposite to the charges of the outgoing
quarks. The polarization charge can combine
with the outgoing charge when the distance between
the two becomes =m ' in the rest frame of the
outgoing quark. This means a distance =Q ' in
the c.m. frame of the original pair. This con-
figuration occurs after a time t =Q jm'. The pro-
portionality between t and Q is important because
it ensures that the outgoing fermions remain free
for sufficiently long times to justify the calcula-
tions of the naive parton model.

The polarization current j„=e„,b "(II) and its lines
of flow are along the hyperbolas of equal p as in
Fig. 11. It is clear from this that the mechanism
which annihilates the outgoing fermions is an
"inside-outside" cascade. In fact, the average
flow of charge is very similar to the average flow
of polarization charge shown in the diagram of
Fig. 6.
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FIG. 11. Hyperbolas indicate lines of constant dipole
density P. The flow of current is indicated by the arrows.

The distribution of the emitted vector bosons
can be calculated from the field Q. Since the field
is coherent, the outgoing particles follow a Poisson
distribution with a density on the rapidity axis of
1. To see this note that the quantity 4) + 4),„, is

so in the region between the light cone and the
polarization charge there is a time-independent
"electric" field of magnitude =g. Thus, the rate
of momentum loss suffered by the outgoing fer-
mions is independent of time and their momenta
(until the polarization charge catches up). There-
fore, the time it takes for the quark to lose a
finite fraction of its momentum groms linearly
with Q. Again, this suggests that the outgoing
particles remain free for a sufficiently long time
to justify the use of free-field theory in calculating
short-distance and light-cone properties of the
interacting theory. Since the analysis also shows
that the outgoing quarks are always neutralized,
this suggests that free-quark singularities will
not appear in the matrix elements of products of
currents. These points will be verified in the
following discussions of the exact properties of
quantum electrodynamics in one space and one
time dimension.

1 )p.„dpgp—2 —m2 ' (2.)2

e& (Py+- ~@&) (21)

IV. FREE FIELDS IN TWO D1MENS1ONS

In this section me consider the properties of
free Fermi fields in two dimensions. The fermi
field can be expanded in terms of normal modes,

where ~~ = (p'+ m')) ~'. This expression should be
compared with the second-quantized expression
for the field [normalized by Eq. (9)]

(22)

Thus, we identify the momentum-space number
density

(23)

This is the familiar Ck jx final-particle distribu-
tion which has been conjectured by Berman,
Bjorken, and Kogut' and Feynman. '

It is also interesting to calculate the distance
the initial fermions travel before losing a finite
(small) fraction of their moments. The momentum
loss P is caused by the "electric" force4 gE
exerted by the polarization charge on the outgoing
pair

(24)

In a world of one space and one time dimension,
the "electric" field is related to the charge density
via

(25)

Outside the light cone the electric field is zero,

('(")= l( ()')(()')~ "' ("():)(():)e"') dk

4~[k[ '

we obtain

qR-vu, q, =v~0 (29)

where 4)s ~ are spinors for right (left) movers.
Ne mill consider two local currents j"=~@"g,

s =$(c). It is easy to see that the current j"(x) is
the sum of two operators, one involving just right
movers and the other just left movers. ' Consider
the quantity

~,",„"„(~)= -i(ol &i "(~)i"(o)Io&. (29)

The operator j" when acting on the vacuum can
create two left movers or two right movers, but
never a left mover and a right mover. Therefore,
the intermediate spectrum of the correlation func-

where a and 6 are destruction and creation opera-
tors for particles and antiparticles, respectively,
normalized to

(a(k), a (k')j =4w~k(5(k —k').

The fermions can be divided into four groups:
right- or left-moving particles or anitparticles.
Using the representation

1 0 0 1
0 -1 ' ' -1 0
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tion Eq. (29) consists solely of lightlike momenta,
so its only singularities in momentum space are
at p' =0. The function T,"„", (x}has the form

For a free boson,

W, =5(2p q+q')

2

T„""(x) = (g"'2 —s"s")ns(0, x'). (30)

1
~(&i —l)2p'g (36)

Next consider the deep-inelastic structure func-
tion for absorption of a spacelike photon by a free
fermion. Choose a frame in which the fermion's
initial momentum is (E,P,}= (P,P} and the virtual
photon's momentum is (0, -2P). Since the electro-
magnetic current j" cannot convert a left mover
into a right mover, the process cannot, in fact,
occur and the structure function vanishes identical-
ly. The reason for this can be traced to the ab-
sence of transverse photons in 2 dimensions and
the fact that spin--,' free quanta cannot absorb
longitudinally polarized photons. The absence of
an absorptive part for these two matrix elements
is a special property of free fermions. For free
bosons the corresponding structure function exists
and is dimensionless. The annihilation process
E(l. (29) has a constant, nonzero absorptive part in
the boson case.

The operator s(x) =(S)(x)(S)(x) is more interesting
because it connects left movers and right movers.
It ha, s nonzero structure functions and yields a
constant absorptive part in the annihilation channel.
This is clear by inspection of the matrix elements

V. GREEN'S FUNCTIONS IN TAO-DIMENSIONAL
QUANTUM ELECTRODYNAMICS

Ne now turn to two-dimensional quantum electro-
dynamics. Consider first the single-fermion
Green's function

(3'f)G(x, 0) = -i(0~ 7(('&(x)P(x)~ 0) .

Since the theory is solved by

0(x) = e """*'X(x),

0(x)=X(x)e " ""',
where y is a free Dirac field, G takes the form

G(x, 0) = G, (x)(0~re" "")e-""'('&~0),

where t", is the free Dirac Green's function

(39)

Thus, this scaling law carries different dimen-
sions than Eq. (33). We will see later that although
the spectrum of two-dimensional. quantum electro-
dynamics consists only of bosons, the scaling laws
for structure functions are characteristic of under-
lying Fermi fields.

and

d xs „,() ) = 1 Je"'*(ol ra(*)s(0)lo)

W, (q') =lmS„„,(q'), (32)

G,(x) = -(2s)-'

The second factor in Eq. (39) can be simplified
to"

exp (- i s [as (0, x') —a~ (m', x')] ),

(33)

where
~ p) is a free fermion of momentum p.

Eciuation (33} is easily evaluated,

(q' q p)=2p q5(2p q+q')

=5(q —1), (34)

where &}=-q'/2q p.
These scaling laws should be contrasted with

those for bosons. Consider the vertex s~(x}
=y'(x)q(x) so that

Wz(q', q p) =lm ie'4 *(p[Ts~(x) s '(0)[ p)
v' lr

where q2& 0. Consider next the scattering channel.
The structure function W„,„(q', q p) is given by

d2X
)('...(&* &'l')=™I"""()I)'(*)~(0)(l&),

G(x2) — (2&&)-& e(«s()))»y x 2 2

(x' —is)'~' (44)

For large values of x' the factor exp[i»b. s(m', x')]
can be set equal to unity. From Eqs. (40) and (44)
we see that G(x') increases relative to G, (x') as
a power (x')"i'. For small values of x', i.e. ,
sufficiently near the light cone, x'&m ', the
logarithmic singularities of ns(0, x'} and hs(m', x')
cancel. Therefore,

where Ls(m', x') is the familiar Feynman propaga-
tor. Equation (39) becomes

G(x)=[GO(x)e " r''o" ']e" s' '" ', (42)

where the factorization indicated on the right-hand
side will be particularly illuminating. Since

isa'(o, x') = --,' ln(x' —is)+const

we have

(35)
G(x} = G, (x).

r2~ 0
(45)



10 VACUUM POLARIZATION AND THE ABSENCE OF FREE QUARKS

Thus, the short-distance and light-cone properties
of the exact fermion propagator are characteristic
of a free fermion.

For large times the exact propagator G(x) tends
to infinity relative to G, . This has the odd conse-
quence that the probability to find a fermion at a
later time becomes infinite. This is, of course,
a gauge-dependent interpretation and occurs be-
cause of the indefinite metric of quantum electro-
dynamics formulated in the Lorentz gauge. In the
more physical Coulomb gauge the probability to
find a single fermion at any later time is zero.
(See Appendix A. ) The physical reason for this
is that in one dimension the electric fieM created
by a single charge does not fall off at large dis-
tances. Therefore, the probability per unit time
to create a fermion-antifermion pair from the
vacuum is proportional to the volume of space.
So, at any time after putting a fermion into the
system there is vanishing probability to find only
one fermion, .

The peculiar character of the charged sectors
of the theory can also be seen in the structure of
the normal modes. As obtained in Appendix A,
a right-moving normal mode y~ is given

x,(*,t)=exp sf (('( (" ((d*'/ ' (,(*,~(

Therefore, the normal mode consists of a single
fermion followed by an infinite line of polarized
pairs. The actual charge of the system is not

localized at position z. In fact, if the lower limit
of the line integral appearing in the equation above
was -L, we would find the charge located at
z = -L. Thus the polarization charge is actually
found at spatial infinity. For this reason the
charged sectors of the theory can never be ex-
cited by the action of local sources.

Since no real asymptotic fermions exist in this
theory, it follows that there are no fermion sin-
gularities in the matrix elements of the currents
j"(x) and s(x). Define"

( pl j"(x)j "(o)Ip). (48)

S(x) = f(OITX(x)e "'""*'X(x)X(O) e-' """X(O)IO).

(50)
Equation (50) can be simplified

i tr[G, (x)]'(OlTe '" '"'e "'""'lo)
4t+ ~-1 ~0 ~ ) 4~ +F2' - 21 ~ 2 2

4~ 2x2

(51)

The short-distance behavior of S(x) is evidently
identical to the free fermion theory since as x'
-0, &e(m', x2)-6~(o, x'). To see how fermion
singularities are replaced by boson singularities
in the intermediate states of S(x), recall Eq. (43).
Thus, the free fermion factor x ' is precisely
cancelled by the first exponential in Eq. (51),
leaving only an exponential of the massive boson
propagator. This remaining exponential corre-
sponds to a sum of Feynman diagrams in which

any number of massive bosons are exchanged be-
tween points 0 and x (Fig. 12). Thus the singu-

Since j"(x) satisfies free-field equations of motion
and commutation rules, only the disconnected
piece of Eq. (48) is nonzero. Therefore, the as-
sociated structure function vanishes as in the
free-field case.

Now consider a two-dimensional analog of e'e
—hadrons in which an external "scalar photon"
couples into this theory via the operator s(x)
=(t((x)g(x). Recall that s(x) generates an initial
state of a quark and an antiquark which separate
on opposite branches of the light cone. This is the
state of interest in the real world. The relevant
matrix element is

S (x) = f (Ol Ts (x) s(0)l 0) .

The aim here will be to show that S is identical
to the free-field S„„when x'- 0, but that no quarks
appear in its intermediate states. Using the solu-
tion for $ given in Eq. (15), Eq. (49) becomes

T""(x)= i( OlTj( x)-j "(0)lo). (46)

Using Eq. ('l) gives

T '(x) = ie "'s„e"('s~(ol T @(x)y(0)-l 0)

2

(g""C3 —s"s")r(~(m', x').
7r

Therefore, the intermediate spectrum is exhaust-
ed by one boson of mass m =g/v v, although the
short-distance behavior is identical to that of the
fr«Fermi field in two dimensions [Eq. (30)j. Con-
sider the matrix element relevant to deep-inelastic
scattering off a free boson of momentum p, i.e. ,

FIG, 12. Navy lines indicate the exchange of any
number of massive vector mesons between points 0 and
x of a current correlation function.
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larities of S(x) consist of a series of thresholds
at m', 4m', . . . . In a similar manner it can be
seen that matrix elements of products of currents
s(x) and j"(x) saturate with free massive bosons. "

Next consider the matrix element

T(x', x p)= i&q,„(p)l»(x) s(0)14 (p)) „„„,„

S(x'}=
2w'(x' —ie)

x exp[-4in[n. n(0, x') —n (m' x')]} (55)

The deep-inelastic structure function is defined by

CPx
W(q', q p}=Im e ' 'T(x', x p)

lT

whose absorptive part is

(52) 1
= —ImT(q' q p) (56)

W(x', x p) = &4,„(p)ls(x) s(o)l q,„(p)), (53)

where l(p,„(p)}denotes a single-boson state of mo-
mentum p, normalized to S(x') ~

„2„,2w'(x' —ie) (5'i)

as q'- —~ with q = -q'/2q p held fixed. As is well
known, this limit isolates the light cone x' = 0.
But, as x'- 0,

& pl p') =4wE, 5(p -p').
Using the solution for g,

T(x', x p) =-16wsin'(p x/2)S(x'), (54)

since the b, ~ functions then cancel. Thus the
scaling law for W(q', q p) is identical to a theory
with free fermions. W(q', q p) can be calculated
explicitly. Carrying out the Fourier transforma-
tion gives

4'(q, q ~ 4)= —isi f (x' —ie) 'exq(-4(efx (q, x') —4 ( ', *')l) xie'(4 '*/q)e"'

= -8w S (q') +4w [S(q'(I —(e})+S(q'(I + a&)}], (58)

where

S(q') =
f
S(x')e"'4'x,

and (4) = -2p ~ q/q'. The imaginary part of the sec-
ond term gives the deep-inelastic structure func-
tion e +boson-e +anything. From Eqs. (56),
(57), and (58) we see that

(59)

1 der =1, y = rapiditya dg
(61)

and, therefore, a total multiplicity of vector
bo sons,

n „„„(Q')= In(I}'. (62)

We note that this exact calculation agrees with the
semiclassical calculations done earlier. The
reason for this can be traced to Qe fact that the

W(q', q P) =W(s) = W( ) =2. (60)
q2~ ~ q)0

Thus, the deep-inelastic function scales in a par-
ticularly simple way. "

The function S also governs the single meson
inclusive spectrum produced in the annihilation
channel. The discontinuity of the first term on the
right-hand side of Eq. (58) is proportional to the
total cross section e'e - anything. The last term
is proportional to the inclusive spectrum e'e-boson+ anything in the physical region q'& 0,
0& ~&1. We find the height of the plateau

bosons are produced in a coherent state.
The mechanism causing the cancellation of the

fermion singularities in matrix elements of cur-
rents is generally valid. A general matrix ele-
ment of products gg will consist of loops of fer-
mion propagators times exponentials of the form

exp (-4 i w [n, (0, x') —n, (m', x')] }.

The factors involving An(0, x') will cancel the
singularities of the free fermion loops leaving
only the singularities of the massive bosons.
These are obtained by expanding the exponential
factors involving n, n(sn', x').

VL ABELIAN TRIPLET MODEL

In this section we will illustrate a somewhat,
more physical model containing "mesons" and
"baryons. " Our purpose in constructing this
model is to show the possibility of eliminating
triality instead of fermion number by screening
an additive quantum number similar to the charm
of three-triplet models. " The "triplet" incorpo-
rated in this model represents the three "color"
states of a quark and not the usual SU(3) label.
The present model is based on an Abe1. ian charm
although we feel that the observed spectrum of
hadrons requires a non-Abelian gauge field (cf.
Sec. VIII). An interesting property of the model
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('2 0 0
C=~ O-l O(oo-i (64)

In addition to the charm current J~c, we define a
baryon current

(65)

and three additional boson currents P„,

where

/'0 0 0'}
T,

=drool

[,
(0 l 0/'
(00 oi

T, =
1 oo-
lot 03
t'00 0)

T, =l 0l 0
(0 O -l/

(66)

(6't)

The technique of solution for this model is identical
to the quantum-electrodynamics case. We obtain
the following equation for the fermion field,

X(~) =e'" '"'0(~), (68)

where 4 =s(Q —P)/g'. The scalar fields satisfy

(Cl+m')P =0, Clg =0,

[y(z, t), j(z', t)] = tm'6(z -z'),

[j(z, t), d y(z', t)/dt] = —tm'6(z —z'),

where

m' = (g'/s) tr C'
= 6g'/w.

The currents 4~, J~ and P„satisfy

DJc 6ga/r Jc
QJ~=O QP =0

indicating the existence of bosons with mass-
squared 6g'/v and zero. In addition to these bosons
the spectrum also contains massless three-quark

presented here is the absence of exotic hadrons
in its spectrum, i.e., the asymptotic states are
completely described in terms of qq and qqq bound

states.
Consider a multiplet of fermions C„C„and C,

carrying charm 2, -1, and -1, respectively. A

vector gauge field B„(x) is coupled to the charm
via the Lagrangian

g~t =+@]fC

= z'a~

where C is the matrix

states ("baryons"). Consider the quantity

C, C2 C3+~ = &~ tI's &z

The field 4~ is a composite field satisfying a
massless free Dirac equation for a right mover,

s '4 = (s 4 )4 4 ' ' '

Cz g2 Cz=gC is.q~ tI~ q~ +

= g(C„+Cz + C,) B+gz = 0.

In obtaining the free-field equation for 4„ it was
crucial that the sum of the charms of the con-
stituent quarks is zero.

The model can also be solved in the Coulomb
gauge. One finds that all states having nonzero
charm do not propagate. Thus, the asymptotic
states of the theory consist of charm-zero states.
A simple counting argument shows that such states
have the quantum numbers of any number of bar-
yons and mesons. Here a baryon is defined as a
bound state of fermions C„C„and C„and a
meson consists of a C, and a C„aC, and C„or
a C3 and C, . Exotic asymptotic states also appear,
but are fully described in terms of noninteraeting
meson and baryon states.

VII. MODEL FGR POLARIZAT1ON CURRENTS
1N FOUR DIMENSIONS

It is obviously important to ask whether the
effects we have described are special to two di-
mensions or whether they can be generalized to
four dimensions. Schwinger argued that the vec-
tor mesons of a gauge theory in four dimensions
can develop a mass if the coupling constant ex-
ceeds a certain critical value. ' Let us assume
that this will be the case. We can then address
ourselves to the simpler space-time aspects of
the mechanism. The massive vector particle in
the theory should appear in the spectrum of the
current and control its large-time development.
Therefore, it is plausible that for times which
are sufficiently large, the generalization. of Eq.
(5) to four dimensions reads

(0+m') j~(x)-=(6,' —a„' —s ' —s '+m') j"(~)

=0.

This equation is, of course, not valid for short
times. The vector potential A „satisfies

GA

in the Lorentz gauge, so again the difference
m'A+ j satisfies a free massless Klein-Gordon
equation. In the presence of an external current

~ ext
(vs

Oj„=-m'(j + j„'"'),
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)P ~ PPV )ext ~ VpeXt
V 0 lf PV (76)

so again (m'2„+ j„) satisfies a free massless Klein-
Gordon equation. It is convenient to introduce
antisymmetric polarization tensors P„v and p„'"„'

such that

P„' has only ' (zt) component given by

P,"",' = g8-(t + z )8(t -g )6 (x}6(y). (78)

Equation (77) is easily solved in momentum space.
Define

One can solve Eq. (75) by finding a solution to

E1P~„+m P~„= -m P~, .

I et the external current again consist of two points
of charge moving in opposite directions (along
the e axis, say} at nearly the speed of light. Then

P„,(q) = e"'P„„(x)d'x.

Then Eq. C,77) becomes

2gPl
tz( }

p p (p2 m2) &

where P, =E +P, . In configuration space

(79)

(80)

P (x}= 2g e Nr'r[t „(I'+ p, ', t' —z') t (0 t' --z')] (8l)

where 6„ is the retarded commutator in two dimensions. The polarization charge is obtained from Eq.
(81}by differentiation with respect to z

j'(x)=-2g e"r "r —n', (m'+p ', t'-z') ——a (O, t'-r. ')~ 8 dp
R r i se N ' (2N)2

(82)

The total polarization charge on a transverse
surface is

j '(x) d'xr =-2g—[&„(m', t'-z')

(83)

mhich is exactly the same result obtained for the
two-dimensional model. The distance between the
polarization charge and the outgoing fermion tends
to zero as m 't '. Since the polarization charge
must be confined to the interior of the light cone,
the transverse spread of polarization charge is of
order m ' and does not increase with time. Thus,
the polarization charge eventually forms a pancake
which catches the outgoing fermion. The force
which the pancake exerts on the outgoing fermion
is the same as in the two-dimensional model since
a pancake of charge is the source of a constant
electric field.

The emitted particle spectrum ean be calculated
as in Sec. III. We obtain

dN g'
dpid pr p, i(pr ™} (84)

V111. CONCLUDING REMARKS

This paper clearly leaves many questions un-
answered. In closing we shall discuss several

which shows the expected dx/x distribution together
with a transverse momentum "cutoff." The multi-
plicity in e'e annihilation is again expected to
rise logarithmically with Q'.

g eg-p (85)

Applying Gauss's theorem, we see that an isolated
unscreened charge will produce a long-range
(r ') field which can only occur if a massless
particle is present in the spectrum. Conversely,
any mechanism which totally screens the charge
eliminates the massless particle from the theory.

A second necessary ingredient in the models we
have considered is that an appropriate multiplica-
tive quantum number be screened (set equal to
one, say, in the physical sector of the theory)
when an additive quantum number is totally
screened. For example, in the two-dimensional
quantum electrodynamics model the fermion num-
ber f is defined to be -1 for fermions and +1 for
bosons. We observe that

( i)Nt +Nt

( l )Nt Nf- (86)

where N«&& is the total number of fermions (anti-
fermions) present. Since the total charge Q of
the system is proportional to Nf —Nz, requiring

I

problems for the future.
Perhaps the most difficult and important point

is to demonstrate the possibility of our mechanism
operating in a four-dimensional quantum field
theory. We require a vacuum so polarizable that
any unscreened isolated "charge" cannot exist.
This is equivalent to the disappearance of a mass-
less gauge boson from the physical spectrum of
the theory. To demonstrate this, consider Max-
mell's equation
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that Q be zero implies that f =+i. A similar con-
nection between triality and charm can be demon-
strated in the model of Sec. VI.

The phenomenon of total screening is not special
to one-dimensionaL physics. Many examples of
total screening can be cited: The most familiar
illustration is the occurrence of complete screen-
ing in metals. When an isolated charge is intro-
duced into a conductor, polarization charge im-
mediately flows towards it from the surface and
completely neutralizes it. In fact, if a positive
and negative charge which recede from one another
at less than the speed of sound are introduced into
the metal, current then flows between them and
eventually neutralizes them.

Another simple example of complete screening
in four dimensions is the Abelian Higgs-Kibble-
Guralnik-Hagen-Englert-Brout mechanism. " In
this case the vector gauge field acquires a mass;
however, the fermions are not removed from the
spectrum of states. This follows from the fact
that these theories have an additional charged
scalar field (Higgs boson). Thus one cannot iden-
tify the total charge with the fermion number and
therefore the screening of the additive quantum num-
ber ("charge") does not imply the complete screening
of the multiplicative quantum number ("fermion
number"). In these theories when a charged
fermion is placed in the vacuum, it is screened
by the charged boson field. Our mechanism re-
quires that the algebraic structure of the theory
be such that setting an additive quantum number
to zero implies that the appropriate multiplicative
quantum number (triality} be completely screened.
Schwinger has speculated that complete screening
can take place in four dimensions without Higgs'
bosons if the coupling constant of the theory ex-
ceeds a certain critical value. '

Another topic to study is the precise algebraic
properties of a gauge theory which realizes the
mechanism we have suggested. Three-triplet
models appear to provide the most natural frame-
work for accomplishing this, because they possess
an additive conserved quantum number whose
vanishing implies the lack of triality. For exam-
ple, an SU(3) degree of freedom could be super-
imposed on top of the charm degree of freedom in
the model discussed in Sec. VI. A more aesthetic
possibility is to couple the eight SU(3)' (charm}
currents to non-Abelian gauge fields and demand
complete screening of all eight currents. This
scheme would then require that the physical spec-
trum consist only of SU(3)' singlets. Such models
are presently empirically favored by known fea-
tures of the hadron spectrum. Two possibilities
which immediately come to mind are the Han-
Nambu and Qell-Mann three-triplet models. " In

the Han-Nambu model

Q =I, +-,'(I'+ I"),

where Y' is the hyperchargelike generator of SU(3)'
while

Q =I, +-,'Y
in Qell-Mann's version of "colored" quarks. Our
mechanism can apply in the Gell-Mann colored-
quark model as it stands. However, it cannot
operate in the simplest version of the Han-Nambu
model. This is so because the electromagnetic
current is not a charmed singlet in this case, so
it can create a state with nonzero total charm.
Such a state would be highly unstable and would
possess similar peculiarities as the charged sector
of one dimensional quantum electrodynamics. A

possible alternative is to introduce another SU(3)"
degree of freedom into the Han-Nambu model,
i.e., three-nonets of Han-Nambu quarks. Then
non-Abelian gauge fields would couple to the SU(3)"
currents and cause the physical sector of the
theory to be a SU(3}" singlet. The advantage of
this scheme is that it allows the quarks to carry
integral electric charge. In such a theory charmed
[SU(3)'] hadrons would be produced at high enough
energies, but triality-carrying states would always
be forbidden. For example, in this model the
electron-positron annihilation cross section into
hadrons would be twelve times the electron-posi-
tron- muon-antimuon cross section.

Another question we have not addressed is
whether Bjorken scaling can occur in four-dimen-
sional gauge theories. %'e have instead argued
that the mechanism which neutralizes the quark
charges does not modify the short-distance be-
havior of the field theory. Recent studies of non-
Abelian gauge theories have shown that they can
be free at short distances. " However, it is not

yet known whether these theories can explain the
early-scaling behavior observed in the SLAC deep-
inelastic experiments.

The best experimental check of our ideas in-
volves the detection of final-state jets of hadrons
produced in deep-inelastic reactions. " The mo-
mentum-space distribution of hadrons in a jet
should be given by dP, ~/F. (p~~ measured along the
direction of the struck parton}. In particular,
there should be no large gaps in momentum space
between the fastest hadrons in a jet and the frag-
ments of the target. In fact, the picture of final
hadron distributions should be essentially the same
as that discussed by Herman, Bjorken, and Kogut, '
and Feynman. '
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APPENDIX A: COULOMB-GAUGE SOLUTION OF T&VO-

DIMENSIONAL QUANTUM ELECTRODYNAMICS

aoar&o =g4

It is convenient to define

J, =gy'(1+ o')q.

Then Eels. (A7) and (A8) give

(A7}

(A8)

A, =0. (A1)

The phenomena discussed in this paper are best
visualized in the Coulomb gauge. " In this gauge
there are no unphysical negative-metric particles
to obscure the propagation properties of the fer-
mion fields. The Coulomb gauge is defined by

-a,a, Ao = J
In terms of P this reads

y=-a, 'a, 'J'

(A9)

(A10}

Fr™Eq. (5) in the text we recall that J, satisfies
a massive Klein-Gordon equation

a a J = -rn J, m -g /m
The Dirac equation becomes

'(Yoeo+ Yzeg)4 gYOAolt' (A2)
or

s, ' J =-s J /m'.

'a-~~ -g+o~z~

whe re

(A4)

Define a scalar field P by

We will consider the propagation of a right-moving
fermion defined by

(A3)

where n=Y,Y, . Now Etl. (A2) becomes
J,(z', t)dz'/m'. (A11)

Therefore, the normal mode g~ of the fermion
field may be expressed in terms of the local field
4g by

-g

Xe(z, t) =exp iv q-'(1+a)qdz' q„(z, t)
OQ

Substituting into Eq. (A10) and using current con-
servation, a, J, + a J = 0, gives

j(z, t) = s, 'J, /~ri-'-

A. o
—a ~ Q.

The solution to the Dirac equation then reads

y„=exp(- igy) X„,

(A5) (A12)

The fermion Green's function can be calculated
in this gauge and interpreted physically. Write
J„ in terms of a scalar field p as in the text

where X„satisfies a free, massless Dirac equation

ia+x~ =0

Maxwell's equations in the Coulomb gauge imply

J„=c„,a "p,

where P is a massive free field. For t ) 0, the
Green's function for a right mover reads

&0lg&(z, t}& (o, 0)lo}=&olx,'(z, t)x„(0,0)lo)

0 exp i — P z', t)—,' dz' exp' i — Q z', 0 —,' dz' 0
. x ' ~, &P( tz), [. z ', ay(z', 0),l

g „ ' sz' l g „ ' sz'

(A13)

Using the normal mode expansion for the massive
scalar field

y(z, t) =
™[at(k)e' ' a(k)e '~'j-

2vm

(A14)

where

[at(k), a(k') j = 5 (k —k'),

we obtain

&0l4&(z, t)0 (0, o)I0)

= &OlX„'(z, t) X„(0,0)l0) e &'", (A15)
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where

K(z, t) =const&& (e"~' &" —1) 's dk.
(~, —h)'

(A16)

For t =0, the integrai defining K(z, t) converges

and tends to zero as z - 0. Thus, for t =0 and
small z, the propagator Eq. (A15) is identical to
the free-field propagator. However, for tt0, the
integral diverges for all values of z and the propa-
gator vanishes. The physical reasons for this
behavior are discussed in the text.

*%'ork supported in part by the Israeli Academy of
Science.

)Present address: Laboratory of Nuclear Studies,
Cornell University, Ithaca, New York 14850.

f.Present address: Heifer Graduate School of Science,
Yeshiva University, New York, New York 10033.

~J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975
(1969).

2In fact, this hypothesis might be overly conservative.
For exampl. e, nonrelativistic quark models suppose
that quarks are bound in extremely deep scalar "poten-
tials. " The meaning of these ideas and their relation
to parton models formulated in an inQnite-momentum
frame and field theory has not been worked out.

3J. Schwinger, Phys. Rev. 128, 2425 (1962); in Theoret-
ical Physics, Trieste Lectures, 1962 {I.A.E.A. ,
Vienna, 1963), p. 89.

4"Electric" field refers here to the components of a
strong-interaction gauge field.

~J. D. Bjorken, private communication to one of us
(J.K.). Also, J. D. Bjorken, informal remarks during
the Deep Inelastic Phenomenology session of the New
York Academy of Science Conference, Recent Advances
in High Energy Physics, 1973, Barbizon Hotel, New

York City (unpublished).
6J. Kogut, D. K. Sinclair, and Leonard Susskind, Phys.

Rev. D 7, 3637 (1973); 8, 2746(E) {1973).
S. M. Berman, J. D. Bjorken, and J. B. Kogut, Phys.
Rev. D 4, 3388 (1971).

R. P. Feynman, Photon Hadron Interactions (Benjamin,
New York, 1972).

~The simplicity of the quantum-number structure of
this model prevents us from constructing an electro-
magnetic current which is distinct from the screened
strong interaction current. In the model of Sec. VI
there is additional structure and no such ambiguity.
A careful calculation retaining all multiplicative factors
replaces Qz(m2, x2) D~{m2, x2) —h, ~(m2, 0) and

Az(0, x2) —Az(0, x2) —A+{0,0). With this replacement
the matrix elements are both infrared- and ultraviolet-
convergent.

~~Because of the presence of Schwinger terms, the time-
ordered product should actually be replaced by a T~
operation in order that T"~(x) be covariant. A consis-
tent treatment of these subtleties agree with the naive

manipulations done here.
~21t should be noted that the matrix elements of |II/ as

calculated here do not have good cluster properties.
In particular the matrix element of Eq. (49) does not
tend to zero as x —"although (0g(~0) = 0. The bad
cluster properties can be removed by a more suitable
choice of the vacuum state as discussed by J. Lowen-
stein and J. Swieca, Ann. Phys. (N.Y.) 68, 172 (1971).
The ambiguity in the choice of vacuum is due to the
spontaneous breakdown of chiral symmetry. %'ith the
better choice of vacuum the right-hand side of Eq. (51)
is replaced by cos 4mAz(m2, x ). One of the authors
(L.S.) thanks C. Callan and S. Coleman for a helpful
discussion of these points.

~3A parton sum rule expressing the conservation of
total momentum can be derived assuming that the mas-
sive bosons are a collection of fermions. It reads
Jo W{q, q p)dq= 1. This sum rv. le is violated by a factorli

of two in the present model. This is perhaps not too
surprising because s(x) = P(x)g(x) is not a good com-
ponent of a conserved current,

~4The first three-triplet model was proposed by M. Y.
Han and Y. Nambu, Phys. Rev. 139, B1006 (1965)~

In this case "charm" can couple directly with external
probes and the quarks have integer charges. Other
models are described by H. Fritzsch and M. Gell-
Mann, in Proceedings of the XVI International Confer-
ence on High Energy Physics, Chicago-Batavia, Ill. ,
1972, edited by J. D. Jackson and A. Roberts (NAI,
Batavia, Ill. , 1973), Vol. 2, p. 132.
P. %. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev.
Lett. 13, 508 (1964); Phys. Rev. 145, 1156 (1966);
F. Englert and R. Brout, Phys. Rev. Lett. 13, 321
(1964); G. S. Guralnik, C. R. Hagen, and T. %'. B.
Kibble, ibid. », 585 (1964).

'~G. 't Hooft, report, 1972 (unpublished); H. D. Politzer,
Phys. Rev. Lett. 30, 1346 (1973); D. J. Gross and
F. %ilczek, ibid. 30, 1343 (1973).

~For a discussion of deep-inelastic final states see
J. D. Bjorken, in Proceedings of the 1971 International
Symjosium on Electron and Photon Interactions at
High Energies, Cornell University, Itkaca, ¹ T.,

edited by N. B. Mistry (Laboratory of Nuclear Studies,
Cornell Univ. , Ithaca, N. Y., 1972).
L. S. Brown, Nuovo Cimento 29, 617 (1963).


